Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation mechanism in nonideal quantum-dot heterostructures

Identifieur interne : 01BA11 ( Main/Repository ); précédent : 01BA10; suivant : 01BA12

Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation mechanism in nonideal quantum-dot heterostructures

Auteurs : RBID : Pascal:95-0391794

Descripteurs français

English descriptors

Abstract

The presence of a deep-level trap coupled to a quantum-dot heterostructure is shown to provide a rapid energy-relaxation pathway through which electrons may thermalize. A capture process is considered whereby a free conduction-band electron is captured into the ground conduction-band state of a quantum dot by multiphonon-assisted tunneling through the trap. As an example calculation, transition rates for a 5 nm radius In0.5Ga0.5As/GaAs quantum dot coupled to the defect M1 are calculated as a function of separation between the quantum dot and the deep level. For separations less than * roughly-equal *10 nm these rates are found to be in excess of 1010 s-1 at 4.2 K. The result suggests that the presence of point defects may serve to enhance the luminescence efficiency of quantum-dot material. The physical situation described in this paper could only arise if the spatial distribution of defects were strongly correlated with that of the quantum-dot structures, e.g., through formation of interface states or point defects as a consequence of the growth process. With this caveat, the proposed mechanism may possibly explain the failure to observe a significant phonon bottleneck effect in recent work on In1-xGaxAs quantum-dot structures [e.g., Appl. Phys. Lett. 64, 2815 (1994)].

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:95-0391794

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation mechanism in nonideal quantum-dot heterostructures</title>
<author>
<name sortKey="Sercel, Peter C" uniqKey="Sercel P">Peter C. Sercel</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403</s1>
<sZ>1 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Physics and Materials Science Institute, University of Oregon, Eugene</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">95-0391794</idno>
<date when="1995-05-15">1995-05-15</date>
<idno type="stanalyst">PASCAL 95-0391794 AIP</idno>
<idno type="RBID">Pascal:95-0391794</idno>
<idno type="wicri:Area/Main/Corpus">01C518</idno>
<idno type="wicri:Area/Main/Repository">01BA11</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0163-1829</idno>
<title level="j" type="abbreviated">Phys. Rev. B</title>
<title level="j" type="main">Physical Review B (Condensed Matter)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electronic structure</term>
<term>Gallium arsenides</term>
<term>Heterostructures</term>
<term>Indium arsenides</term>
<term>Interface states</term>
<term>Luminescence</term>
<term>Multi-phonon processes</term>
<term>Point defects</term>
<term>Quantum dots</term>
<term>Relaxation time</term>
<term>Temperature dependence</term>
<term>Temperature range 0000-0013 K</term>
<term>Theoretical study</term>
<term>Umklapp processes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude théorique</term>
<term>7150</term>
<term>7155</term>
<term>7320D</term>
<term>Point quantique</term>
<term>Hétérostructure</term>
<term>Gallium arséniure</term>
<term>Indium arséniure</term>
<term>Dépendance température</term>
<term>Domaine température 0000-0013 K</term>
<term>Etat interface</term>
<term>Défaut ponctuel</term>
<term>Structure électronique</term>
<term>Processus n phonons</term>
<term>Processus Umklapp</term>
<term>Temps relaxation</term>
<term>Luminescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The presence of a deep-level trap coupled to a quantum-dot heterostructure is shown to provide a rapid energy-relaxation pathway through which electrons may thermalize. A capture process is considered whereby a free conduction-band electron is captured into the ground conduction-band state of a quantum dot by multiphonon-assisted tunneling through the trap. As an example calculation, transition rates for a 5 nm radius In
<sub>0.5</sub>
Ga
<sub>0.5</sub>
As/GaAs quantum dot coupled to the defect M1 are calculated as a function of separation between the quantum dot and the deep level. For separations less than * roughly-equal *10 nm these rates are found to be in excess of 10
<sup>10</sup>
s
<sup>-1</sup>
at 4.2 K. The result suggests that the presence of point defects may serve to enhance the luminescence efficiency of quantum-dot material. The physical situation described in this paper could only arise if the spatial distribution of defects were strongly correlated with that of the quantum-dot structures, e.g., through formation of interface states or point defects as a consequence of the growth process. With this caveat, the proposed mechanism may possibly explain the failure to observe a significant phonon bottleneck effect in recent work on In
<sub>1-x</sub>
Ga
<sub>x</sub>
As quantum-dot structures [e.g., Appl. Phys. Lett. 64, 2815 (1994)].</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0163-1829</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. Rev. B</s0>
</fA03>
<fA05>
<s2>51</s2>
</fA05>
<fA06>
<s2>20</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation mechanism in nonideal quantum-dot heterostructures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SERCEL (Peter C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403</s1>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>14532-14541</s1>
</fA20>
<fA21>
<s1>1995-05-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© AIP</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>95-0391794</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical Review B (Condensed Matter)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The presence of a deep-level trap coupled to a quantum-dot heterostructure is shown to provide a rapid energy-relaxation pathway through which electrons may thermalize. A capture process is considered whereby a free conduction-band electron is captured into the ground conduction-band state of a quantum dot by multiphonon-assisted tunneling through the trap. As an example calculation, transition rates for a 5 nm radius In
<sub>0.5</sub>
Ga
<sub>0.5</sub>
As/GaAs quantum dot coupled to the defect M1 are calculated as a function of separation between the quantum dot and the deep level. For separations less than * roughly-equal *10 nm these rates are found to be in excess of 10
<sup>10</sup>
s
<sup>-1</sup>
at 4.2 K. The result suggests that the presence of point defects may serve to enhance the luminescence efficiency of quantum-dot material. The physical situation described in this paper could only arise if the spatial distribution of defects were strongly correlated with that of the quantum-dot structures, e.g., through formation of interface states or point defects as a consequence of the growth process. With this caveat, the proposed mechanism may possibly explain the failure to observe a significant phonon bottleneck effect in recent work on In
<sub>1-x</sub>
Ga
<sub>x</sub>
As quantum-dot structures [e.g., Appl. Phys. Lett. 64, 2815 (1994)].</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A50</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A55</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7150</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7155</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7320D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Point quantique</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Quantum dots</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Hétérostructure</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Heterostructures</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Dépendance température</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Temperature dependence</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Domaine température 0000-0013 K</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Temperature range 0000-0013 K</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Etat interface</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Interface states</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Défaut ponctuel</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Point defects</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Structure électronique</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electronic structure</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Processus n phonons</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Multi-phonon processes</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Processus Umklapp</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Umklapp processes</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Temps relaxation</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Relaxation time</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Luminescence</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Luminescence</s0>
</fC03>
<fN21>
<s1>213</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9513M0743</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 01BA11 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 01BA11 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:95-0391794
   |texte=   Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation mechanism in nonideal quantum-dot heterostructures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024